
© 2004 AB Strakt STRAKT

Real-world email handling in python

Anders Hammarquist

© 2004 AB Strakt STRAKT

Real-world email handling in python

 A review of how the world bends the standards
and how to feed it into Python and survive

 By now CAPS has seen tens, possibly
hundreds, of thousands of email messages

 This is the story of what we've done to not fall
over when something strange comes in

© 2004 AB Strakt STRAKT

Background (CAPS and email)

 Email is a primary means of communicating
with customers. It must not break!

 Messages must be stored in a way that is
compatible with the rest of CAPS, and
generated in a way that is understood by the
MUAs out there.

 All text in CAPS is unicode
 We will explore all the things that can go wrong

when trying to communicate using rfc-822 and
friends.

© 2004 AB Strakt STRAKT

So what's the problem?

 MIME!

 Almost all problems we've seen are related to
MIME

 If you stick with 7-bit us-ascii text/plain things
work just fine

© 2004 AB Strakt STRAKT

Encodings (fitting more bits in 7)

 Three types
• Body: räksmörgås

• Unstructured header fields:
=?iso-8859-1?q?r=E4ksm=F6rg=E5s?=

• Structured header fields:
title*=iso-8859-1'sv-se'r%E4ksm%F6rg%E5s

 email.Message deals with Body and structured
header fields, apply
email.Header.decode_header() for
unstructured headers.

© 2004 AB Strakt STRAKT

Decoding the body
 7bit and 8bit are easy and straight-forward

• multipart/* and message/* must be

• sometimes mislabled

 quoted-printable and base64 are sometimes
broken, often MIME-unaware software that adds a
footer, or spam or viruses with broken base64
• Found on a Sourceforge mailinglist

Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
...
http://ads.osdn.com/?ad_id=1470&alloc_id=3638&op=click

 Python 2.3 deals with broken encodings (2.2 didn't)

© 2004 AB Strakt STRAKT

Decoding the body

 email.Parser may fail for various MIME formatting
problems
p = email.Parser.Parser()
m = p.parse(fp,headersonly=True)
bodystart = fp.tell()
try:
 p._parsebody(m,fp)
except:
 fp.seek(bodystart)
 m.set_type('text/plain')
 m.set_payload(fp.readline())

© 2004 AB Strakt STRAKT

Decoding the header

 No 8-bit data (but it happens)
 Two types of encodings:

• RFC-2047-style for unstructured header fields (i.e. text
and comments)

• RFC-2231-style for structured header fields (parameter
values of MIME headers)

 RFC-2231 isn't well supported, so you will see
RFC-2047-style encodings in structured headers.

© 2004 AB Strakt STRAKT

Filenames (RFC-2231 vs MS)

 Outlook sends thinks like
filename="=?ISO-8859-1?Q?r=E4ksm=F6rg=E5s?="

and knows nothing about RFC-2231. So how do
we make Outlook-users happy?
• Two "filename" parameters

 Content-Type: name= (deprecated)
 Content-Disposition: filename=

• Put RFC-2047 in "name" and 2231 in "filename"

© 2004 AB Strakt STRAKT

Filenames (RFC-2231 vs MS)

 To parse the incoming header
• if Message.get_param() returns something RFC-2047-

like decode that with email.Header

• otherwise use whatever came back (plain or 2231)

 Header.decode_header() on the entire header
gives filename=" räksmörgås " (note spaces)

© 2004 AB Strakt STRAKT

Character sets

 No matter what encoding, all email.* gives you
after decoding is an 8-bit byte stream
• 'r\xC3\xA4ksm\xC3\xB6rg\xC3\xA5s' or 'r{ksm|rg}s'

 To do more, find the character set, convert
 Be prepared for Python not knowing the character

set (SEN-850200-B is unknown, which is what
r{ksm|rg}s is)

 Possibly bail with ISO-8859-1 (character values
stay the same in unicode)

© 2004 AB Strakt STRAKT

Newlines (CRLF or LF?)

 RFC-2822 says line endings are CRLF
 Python tends to use LF

 so we must convert...

 Twisted SMTP and smtplib convert "raw" data
 But what if our character set isn't 7bit?

© 2004 AB Strakt STRAKT

Newlines in 8bit data

 RFC-2045 says base64-encoded text must use
CRLF (and sendmail will remove plain-LF if it
converts base64 to 8bit)

 Python's base64 encoder doesn't convert so how
about converting to CRLF before constructing an
email.Message?

 It works great for character sets that do get
encoded, but not so great for us-ascii...

© 2004 AB Strakt STRAKT

Newlines...

 So CRLF works if the character set need
converting (it works with quoted printable too), but
breaks with us-ascii.

 Solution:
• Convert everything but us-ascii to CRLF

 Better fix (in the library):
• Get the email.Charset converters to treat data as

non-binary

© 2004 AB Strakt STRAKT

Incoming newlines

 Be prepared for CRLF even if you think it's all LF

 base64-encoded parts will use CRLF

© 2004 AB Strakt STRAKT

Summary

 Know your RFCs

• 2822 (Internet message format)

• 2045-2049 (MIME)

• 2231 (Parameter values in non-ascii)

 Be prepared that messages violate EVERYTHING
 Still possible to build a fairly robust message

handling system

© 2004 AB Strakt STRAKT

Questions

?

