
© 2004 AB Strakt STRAKT

Real-world email handling in python

Anders Hammarquist

© 2004 AB Strakt STRAKT

Real-world email handling in python

 A review of how the world bends the standards
and how to feed it into Python and survive

 By now CAPS has seen tens, possibly
hundreds, of thousands of email messages

 This is the story of what we've done to not fall
over when something strange comes in

© 2004 AB Strakt STRAKT

Background (CAPS and email)

 Email is a primary means of communicating
with customers. It must not break!

 Messages must be stored in a way that is
compatible with the rest of CAPS, and
generated in a way that is understood by the
MUAs out there.

 All text in CAPS is unicode
 We will explore all the things that can go wrong

when trying to communicate using rfc-822 and
friends.

© 2004 AB Strakt STRAKT

So what's the problem?

 MIME!

 Almost all problems we've seen are related to
MIME

 If you stick with 7-bit us-ascii text/plain things
work just fine

© 2004 AB Strakt STRAKT

Encodings (fitting more bits in 7)

 Three types
• Body: räksmörgås

• Unstructured header fields:
=?iso-8859-1?q?r=E4ksm=F6rg=E5s?=

• Structured header fields:
title*=iso-8859-1'sv-se'r%E4ksm%F6rg%E5s

 email.Message deals with Body and structured
header fields, apply
email.Header.decode_header() for
unstructured headers.

© 2004 AB Strakt STRAKT

Decoding the body
 7bit and 8bit are easy and straight-forward

• multipart/* and message/* must be

• sometimes mislabled

 quoted-printable and base64 are sometimes
broken, often MIME-unaware software that adds a
footer, or spam or viruses with broken base64
• Found on a Sourceforge mailinglist

Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
...
http://ads.osdn.com/?ad_id=1470&alloc_id=3638&op=click

 Python 2.3 deals with broken encodings (2.2 didn't)

© 2004 AB Strakt STRAKT

Decoding the body

 email.Parser may fail for various MIME formatting
problems
p = email.Parser.Parser()
m = p.parse(fp,headersonly=True)
bodystart = fp.tell()
try:
 p._parsebody(m,fp)
except:
 fp.seek(bodystart)
 m.set_type('text/plain')
 m.set_payload(fp.readline())



© 2004 AB Strakt STRAKT

Decoding the header

 No 8-bit data (but it happens)
 Two types of encodings:

• RFC-2047-style for unstructured header fields (i.e. text
and comments)

• RFC-2231-style for structured header fields (parameter
values of MIME headers)

 RFC-2231 isn't well supported, so you will see
RFC-2047-style encodings in structured headers.

© 2004 AB Strakt STRAKT

Filenames (RFC-2231 vs MS)

 Outlook sends thinks like
filename="=?ISO-8859-1?Q?r=E4ksm=F6rg=E5s?="

and knows nothing about RFC-2231. So how do
we make Outlook-users happy?
• Two "filename" parameters

 Content-Type: name= (deprecated)
 Content-Disposition: filename=

• Put RFC-2047 in "name" and 2231 in "filename"

© 2004 AB Strakt STRAKT

Filenames (RFC-2231 vs MS)

 To parse the incoming header
• if Message.get_param() returns something RFC-2047-

like decode that with email.Header

• otherwise use whatever came back (plain or 2231)

 Header.decode_header() on the entire header
gives filename=" räksmörgås " (note spaces)

© 2004 AB Strakt STRAKT

Character sets

 No matter what encoding, all email.* gives you
after decoding is an 8-bit byte stream
• 'r\xC3\xA4ksm\xC3\xB6rg\xC3\xA5s' or 'r{ksm|rg}s'

 To do more, find the character set, convert
 Be prepared for Python not knowing the character

set (SEN-850200-B is unknown, which is what
r{ksm|rg}s is)

 Possibly bail with ISO-8859-1 (character values
stay the same in unicode)

© 2004 AB Strakt STRAKT

Newlines (CRLF or LF?)

 RFC-2822 says line endings are CRLF
 Python tends to use LF

 so we must convert...

 Twisted SMTP and smtplib convert "raw" data
 But what if our character set isn't 7bit?

© 2004 AB Strakt STRAKT

Newlines in 8bit data

 RFC-2045 says base64-encoded text must use
CRLF (and sendmail will remove plain-LF if it
converts base64 to 8bit)

 Python's base64 encoder doesn't convert so how
about converting to CRLF before constructing an
email.Message?

 It works great for character sets that do get
encoded, but not so great for us-ascii...

© 2004 AB Strakt STRAKT

Newlines...

 So CRLF works if the character set need
converting (it works with quoted printable too), but
breaks with us-ascii.

 Solution:
• Convert everything but us-ascii to CRLF

 Better fix (in the library):
• Get the email.Charset converters to treat data as

non-binary

© 2004 AB Strakt STRAKT

Incoming newlines

 Be prepared for CRLF even if you think it's all LF

 base64-encoded parts will use CRLF

© 2004 AB Strakt STRAKT

Summary

 Know your RFCs

• 2822 (Internet message format)

• 2045-2049 (MIME)

• 2231 (Parameter values in non-ascii)

 Be prepared that messages violate EVERYTHING
 Still possible to build a fairly robust message

handling system

© 2004 AB Strakt STRAKT

Questions

?

